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The propagation of plane and spherical waves in a nonlinearly compressed medium with 
linear and discontinuous unloadings when acted upon by intense loads is considered. The 
solutions of the problem are constructed by an inverse method [i] assuming that the medium 
at the front of the shock wave is instantaneously loaded nonlinearly, while behind the shock 
wavefront in the perturbed region irreversible unloading of the medium occurs. The propaga- 
tion and reflection of elastoplastic waves in a rod of finite length for the Prandtl arrange- 
ment with discontinuous unloading has been solved by the method of characteristics in [2]. 

Unlike [2] in this paper we solve the one-dimensional nonstationary problems of a plane 
and spherical layer analytically using an inverse method, and we consider the propagation of 
a nonlinear loading--unloading shock wave. It should be noted that this paper is a continua- 
tion of [i] for a medium with discontinuous unloading. In the case of linear unloading of 
the medium, the finiteness of the time interval during which the load applied to the boundary 
layer acts is taken into account and solutions of the problem are found in regions outside 
the limits in which it acts. The inverse method consists in determining the wave field in a 
layer of ground and the profile of the load applied to its boundary from the products of an 
explosion with a specified law of motion of the shock wave. The ground when acted upon by 
intense forces, as in [3], is taken to be a nonlinearly compressed ideal medium. A similar 
approach was used previously in [4] to study the mechanical action of an underground explo- 
sion. For a specific structure of the medium the results of the calculations are presented 
in the form of graphs of the pressure, and of the velocity of the medium at the boundary of 
the layer, on the shock-wave front, and in the perturbed region as a function of time. A de- 
tailed analysis is carried out of the kinematic parameters of the medium for the case of lin- 
ear unloading, and a comparison is made with acoustics. The effect of the nonlinear proper- 
ties of the medium on the distribution of the dynamic characteristics of shock-wave processes 
is investigated. The calculations were carried out for the case when the velocity of the 
shock-wave front is specified in the form of a linearly decreasing function of time, and when 
solving the problem the corresponding load profile is determined. The surface of the pres- 
sure isobars is constructed. 

i. The Propagation of Plane and Spherical Waves in a Nonlinearly Compressed Medium with 
Linear Unloading. Suppose a monotonically decreasing load po(t) is applied to the boundary 
of the layer r = Ro. The equations in the unloading region, the relations on the front r = 
R(t), and the boundary condition (the initial conditions are zero) have the form [i] 

8 u ,  t 8p i), 8 p ,  (Su u )  
7/ ~ t, o ,'Jr = ,7 /~-  Po ~ -I: v T 

p (r ,  t) = p *  -~- E (e - -  e*) ,  e = t  Po p 

, ,*(t) = ~ * k ,  p*  = p*~*h",  

p*( t )  = al~* - -  ~ * "  ('It = dR~dO for 

i )(r ,  t) = po( t )  fo~ 

= O, 

E = C~po; 

(1.1) 

(1.2) 

r = /~(t); 

1" = No, ( 1 . 3 )  

where u is the mass velocity, p is the density, p is the pressure, r is the volume deforma- 
tion, v = 0, 2 relate to the plane and spherical layer respectively, and the parameters of the 
medium which relate to the front are denoted by the asterisk. If we specify the velocity of 
the front in the form of a decreasing function of time, all the parameters of the medium 
when r = R(t) will be known, and relations (1.2) will be the boundary condition for (i.i). 
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In  t h i s  case we obta in  the f o l l ow ing  equation fo r  a plane one-d• wave (v = O) from 
(i. i) : 

which, taking 

0% 2 o~__.~ = O, (Io 4) 
ot--'-" -- Cp Or 2 

(1.2) into account, has a solution in the form 

2 

u (r, t) = u* (O) I ~ ( _  l)i-1 2cp 
~-(-1)i-lCPt { %9~ d z i ' a  2 [F (zOl 

y )~ IF (zOl ,~[P (z~)] + 
/ t  o 

F( ) 
t al r 2 _ _  1 

- ~ ~ poh~ ( t ) -  % 
where A l( t)=:  " 2 --A z(t); A~(t)= 4 % 

(1.5) 

Substituting (1.5) into the first of Eqs. (i.i) and integrating with respect to r from 
r = Ro to r = R(t), we obtain the following equation for determining the load po(t): 

n(O 2 ( ~ [2B (F (zi)) @ (--  l)~-lCp]/) (F (zi)) 

' 9~ 1~ ''R]F(z~)IlAa[F(zOI+ - dr, P ~  ~ A2 [f (z~) ] (1.6)  
/~0 /=:1 

where zl,2 = r~,cpt, and F(zI,2) is the root of the equation R(t)-TCpt = zl.2 for t~ Note 
that Eq. (1..6) is more accurate than the one in [i] and holds so long as pr 0. We will 
now solve the corresponding boundary value problems. The region considered is divided into 
n = i, 2, 3: .... regions each of which for n>~2 is bounded by the characteristics AB, BC, CD, 
etc. (Fig. ]), of the positive and negative directions, the boundary layer, or the part of the 
front r = R(t). 

We will give the solution of the problem for region 2. From (i.i) for v = 0 we obtain 
the equation 

02.__pp o O~p 
Ot ~ - -  C.p Or--5, " = O, 

for the solution of which we have the conditions 

p(r, t) = pl(t) for r - - % t  = / ~ o - - % t o ,  
p ( r ,  t) = 0 for r = /~o, t > t t  o . 

Then, using d'Alembert's formula we obtain 

p(r,  t) = -- pl [ (tt~ § c p t ~  
2cp -~- 

Pl I(r @ cpt) -- (R~ cPt~ ] 
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Integrating the first equation of (i.i) with respect to t from t = t*(r) to t, we have 

{r, t) = ~, , ,  ;7 j- ~ / p ~  [ 2 ~  + P, ' 2 ~  - p~ (t) - p~ ( to) ,  

where p1(t) and u1(t) are the pressure and velocity of the medium along the characteristic 
AB, determined from the solution of the problem in region i. The solution of Eq. (1.4) in 
the region 3 can be represented in the form 

u(r, t) = 16(r ---, opt) q- I6(r -I- % t ) .  (1 .7 )  

To find the functions f5 and f~ the problem has a boundary condition on Be and relations on 
the front r = R(t). However, as calculations show [5], the front of a two-dimensional sta- 
tionary plastic wave, depending on the depth of the half-plane, is only slightly changed. 
The deformation of the front compared with the .initial shape is approximately 15-20% and is 
even less for greater depths. In addition, the line BD has a finite length. Hence, to a 
first approximation the relations on the discontinuity are satisfied by the initial shape 
of the front, corresponding to the point B (RI, tl). We then have 

u(r, t) = u~(t)when r A- c p t =  R1 -~ cptl;  (1.8) 

U (r :  t)  = h ( t )  A 1 ( t )  l 
Po R(t )  R(t) ]when r - -  R l ~ , a x ( t - -  tl) , (1 .9 )  

Ou a s 

Or A 2 (t) 

where ax = dR/dr when r = Ra, and t = tx, and u2 is the velocity of the medium at BC, found 
from the solution in region 2. Substituting (1.7) into (1.8) we obtain 

r -/- Cpt 1 -  ( r - -  Cpt) ] 
u (r, t) = u2 ffTp "% [e (r " c p t )  - -  ~s (rl + cptl). (i.lo) 

System (1.9), taking (i.i0) into account, enables one to obtain the following system of two 
equations for f~(t) and ~(t) (in region 3 unlike region 1 R is the desired parameter): 

tt 2 \ %/(h \ Cp / ~P/ 1/2.(tl) = - -  ( t)  2 2 

i + ~ / t l  + Cp/ 
U 2 

ax) --  (h  (t) -F Cp -1- ax) A2 [JR (t)! q- (% " 2al) A~ (al); 

(1.11) 

A- J~ [(R1 --  altl) -t- (al -t- cp) t l - -  J~ (Rx -t- Cptl) = h (t) A 1 [R (t)l. (1 .12)  

Equation (i.ii) for~R(t) is easily solved by a graphical-analytical method. After finding 
R(t), using (i.ii), we find f6(t) from (1.12), and then the mass velocity from (i.I0). Fur- 
ther, by integrating the equation of motion of system (i.i) with respect to r from r = 
--Cpt + (R~ + Cptl) = R2(t) to r, we obtain 

SOu  
p (r, t) = P2 (t) --  Po ~7 dr, 

R2(t) 

where p2(t) is the pressure at BC, calculated from the solution in region 2. 

The solutions of the problem for the following regions (see Fig. I) are obtained in the 
same way. In the case of a spherical wave (v = 2) from (I.i) we have 

or'- P o 7  - -  - r ~,~r - -  - 
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which, taking (1.2) into account for given R(t) gives a solution of the form 

t~-f 't ~i ~+i~ ~ "V(h)];%~(t~) 
r [ RO RO ~t 0 Ro 

r (h) d~, -- 

B o 

d~.~ 
B o 

~+%t ~ik(r(~)lhlg(LJln[F(L)l ~ l  } 9o 
_ d~  d~  + m~c~t + n~ , 

% �9 " % iF ( L ) I  
R o B o 

(i.i3) 

r (~,) d~, - 

where 

n~ {lh (o) + ~pl ~* (o) + b (o) 8, (o)}; n, = - R~k (0) 8" (0); 
Cp 

r  2%n(h-%) h- - ~  - 

-- [ n~ %(/~+%)]_  
- -%- 2 + k ~ h~ 

~)0 " "'2 

a2 RRR I I 
~ep (it -- %) A~ (F (tl)) A! (F (~1)) 2 q- - -  (2~+%)R ~ + 2 ~ - ~  ; ~ / j  ~ . 

The derivation of an equation for the load po(t) in the case of a spherical wave taking (1.13) 
into account is similar to the case of a plane wave 

Po (t) = p* (t 
R(o ( ,-~pt R[F(~+%0]-%vF+%t ) 

R 0 R 0 

r (g0 d~ --  o~ [F (r + %01 nnl 
a2A 2 IF (r -~- cpt)l d r - -  (1.14) 

90% 
no no Ro no no no 

dr. 

As noted above, Eq. (1.14) holds when po(t) ~0, and if po(t) vanishes in a finite time in- 
terval t = to (see Fig. i), it is necessary to carry out additional investigations by divid- 
ing the region into n parts, as was done in the plane case. 

To dete~nine the shape of the shock wave R(t) in region 3, unlike the plane case we have 
a nonlinear differential equation of the form 

d~ ( 0  _ _ _  
dt 

-- ' '  (t -- cpt] i f_2%(~ s) v~[n~+~x ~ ) -  . _  
F (R) t [R1 + % (t --  t0] 

(i.15) 

[( )( 
ts~ § % (t - q)! A~ (0 
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[ ] 2atA = (0 2R (t) --f- R1 "i- a z (t tl) IR: + ~ (t - q)l - ' 

k (t} [k (0  + (cp + a 01 
w h ~  F (k )  = ~ " % (t) + As (t); 

~z(t) is a function known from the solution of the problem in region 3, and the prime de- 
notes the derivative with respect to the argument. Equation (1.15) can be solved numerical- 
ly by the Runge-Kutta method [6], as a Cauchy problem with initial data R = R(tz), R = R(tl) 
with t = tz. The procedure for obtaining the formula for the pressure in regions 2 and 3 is 
based on integration of the equation of motion of the medium with appropriate limits of in- 
tegration taking into account the boundary conditions of the problem. 

2. Propagation of Waves in a Medium with Discontinuous Unloading. If the diagram of 
the state of the medium (Fig. 2a) for unloading has a broken line, consisting of two straight 
lines, the results obtained in section 1 hold as long as p(r, t) ~p** and e~e**. Hence 
using the results obtained above in the physical (r, t) plane we initially determine the sur- 
face on which p = p**, e = e** and find the velocity distribution on it. Calculations show 
that tile pressure on the shock-wave front decays more slowly than in the cavity. Hence, the 
pressure isobar is elongated towards the spatial coordinate r (Fig. 2b). Further when p < 
p** the medium becomes less rigid and possesses a Young's modulus Ez(Ez < E), and it is then 
necessary to solve the problem of the propagation of plane and spherical waves for region 2, 
bounded by the surface AB, the characteristic of the positive direction BC, and the boundary 
of the layer AC (see Pig. 2b). 

We will solve the plane problem with the following boundary conditions: 

u(r, t)=u**(t), ~ / ( r ,  t ) = u * * ( t )  for r = R  z ( t ) .  ( 2 . 1 )  
p = p**  c o n s t ,  e = e** = cons t  

The equation of state of the medium in this case has the form 

p(r, t) = p * *  + EI(~ - -  ~**),  (2.2) 
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where 
taking (2.1) and (2~ into account, has the solution 

are specified quantities found from the p ~ e diagram. 

(r--cplt r+Cplt 

:, (r  t) = ~** (no, 4 ~ - ~ : ~o 

Then (1.4) , 

where Zio = R0-~-Cp:to; Fi(z i) (i = 3, 4) is the root of the equation B~(t)-~ cmt-~ z~ 
t h e  t i m e  t .  I n  t h i s  c a s e  u s i n g  ( 2 . 1 )  we o b t a i n  f r o m  ( 1 . 1 )  

R 0 

Po 
Po (t) = p** - -  j {u** [Fs (r - -  %:01 + u** [F~ (r + %:t)l} dr. 

2 . 
~t(t) 

for 

(2,3) 

Similar investigations in the case of a spherical wave enable us to represent the solu- 
tion of the problem in region 2 in the form 

,~ ( r , t )=L ( d~ ~;~(h)  d ~ +  d~ K ~ ( ~ ) d h - -  

"(  : :'~o % :;~ 

i t 

t z30 ::;0 '30 

r+cpl~ u ~2 

:40 z40 z:o 

( 2 . 4 )  

io{[7 v })o (t) = p** - -  Po%1 r - -  K~ (~,) d~, ~ J 
* Rl(t ) z30 z40 L z3{} 

r+cplt ~2 1} 

:40 z~O 

i Cp 1 

+ (2.5) 

~** iF; (~)1 
Cpl 

where ms, ns, ms, n~ are constant coefficients calculated from the first two conditions of 
(2.1) when R**(t) approaches the points A(Ro, to**) and B(R,, TI**) (see Fig. 2b). 
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A comparative investigation shows that the horizontal line }fl< in the diagram (see Fig. 
2a) corresponds to the surface AB (see Fig. 2b) in the physical (r, t) plane. It may happen 
that the load defined by (2.3) or (2.5) vanishes at the intermediate point E at the boundary 
of the layer. Regions 3, 4, and 5 then occur bounded respectively by the characteristics of 
the positive and negative directions, the boundary line CE and the part of the shock wave BD. 
The method of solving the problem in region 3 was described above, while in regions 4 and 5 
we have a Gurs problem. Further, in regions 6 and 7 (see Fig. 2b) the problem is solved in 
the same way as in regions 2 and 3 of section 1 (see Fig. I). It is of interest to investi- 
gate the effect of the duration and profile of the load on the shock-wave processes. 

3. Results of the Calculations. Some results of the calculations for a medium with 
linear unloading with the initial parameters [7] 

a l  = 12.t27"10 ~ kg/crr~, a~ = 58.73.103 kg/c rn~, 

E = 14-i03 kg/crr~, Rz = 391 m/sec; 
cr 1 = i8-i0~ kg/cm ~, a2 = 82"t03 kg/cmZ, E = 18"t03 kg/cm ~, 

t/z ---- 440m/sec(po= i05kg/cmz' Po = 200kg-sec2/m4,R2 -- 2Rz' i0  ~ m/secz) 

(3.1) 

(3.2) 

for the case when the shape of the surface of the front is specified in the form of a second- 
degree polyuomial 

t 2 
R (0 = R0 § R1t -- R~ ~, 

where R(t) ~0, are given in Figs. 3-5 in dimensionless form with respect to the maximum val- 
ue of the pressure, velocity, and the units of length and time. In Fig. 3a we give graphs 
of the change in the load po(t) and the mass velocity of the medium u(t) on the boundary of 
a plane and spherical layer (the broken lines) and on the front R(t) as a function of time. 
Hence it can be seen that to maintain the same pressure at corresponding points of the plane 
and spherical front it is necessary to apply a larger load to a spherical cavity compared 
with a plane one. This is a consequence of the inverse formulation of the problem, since in 
the direct formulation (if the load is given) the pressure on the spherical front falls more 
rapidly than on the plane front. In this case the decay of the pressure (velocity) on the 
wavefront occurs more slowly than on the boundary of the layer. 

In Fig. 3b we show the change in p(r, t) and u(r, t) as a function of the spatial co- 
ordinate r at a fixed instant of time t. Notice that the pressure varies linearly with r, 
whereas the velocity varies mainly nonlinearly. In order to investigate the dependence of 
the load po(t) and the pressure p*(t) on the shape of the shock-wave front we show curves in 
Fig. 4 of the change in po(t) and p*(t) as a function of t for case (3.2) for R= = 2Rz'I0 =, 
4R~-102, and 2Rz.103; these are shown by the continuous, broken, and dash-dot lines respec- 
tively. These curves indicate that in the plane problem when R2 = 4Rz'I02 and R2 = 2Rz'I03 
the pressure p*(t) and the load po(t) fall nonlinearly as p increases. In Fig. 5 we show 
the surface of constant pressure p** = const and a curve of the velocity distribution u**(t) 
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on it as a function of t, which serves as the boundary condition when investigating the prop- 
agation of a plastic wave in a nonlinearly compressed medium in the following regions (curve 
2 refers to a spherical wave). 

The authors thank Kh. A. Rakhmatulin for discussing the results. 
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